Jialu Bao

personal website: http://pages.cs.wisc.edu/~jialu/about/
email: jialu@cs.wisc.edu
twitter: @howowhy
Jialu Bao

- 2nd year PhD student with Justin Hsu

email: jialu@cs.wisc.edu
twitter: @howowhy
Jialu Bao

• 2nd year PhD student with Justin Hsu
• Projects since i came here
Jialu Bao

- 2nd year PhD student with Justin Hsu
- Projects since i came here
 - A logic for conditional independence

personal website: http://pages.cs.wisc.edu/~jialu/about/
email: jialu@cs.wisc.edu
twitter: @howowhy
Jialu Bao

• 2nd year PhD student with Justin Hsu

• Projects since I came here
 • A logic for conditional independence

personal website: http://pages.cs.wisc.edu/~jialu/about/
email: jialu@cs.wisc.edu
twitter: @howowhy

\[
z = \text{Bernoulli}(0.5);
\]
\[
x = \text{Bernoulli}(0.5);
\]
\[
y = \text{Bernoulli}(0.5);
\]
\[
a = z \text{ or } x;
\]
\[
b = z \text{ or } y;
\]
\[
\langle a, b \cond \text{indep} \given z \rangle?
\]
• 2nd year PhD student with Justin Hsu

• Projects since i came here
 • A logic for conditional independence
 • How to assert cond indep? (Assertion logic) How to reason about it? (Program logic)
Jialu Bao

• 2nd year PhD student with Justin Hsu

• Projects since i came here
 • A logic for conditional independence
 • How to assert cond indep? (Assertion logic) How to reason about it? (Program logic)
 • Separation logic, intuitionistic logic, category theory (not used eventually)

z = Bernoulli(0.5);
x = Bernoulli(0.5);
y = Bernoulli(0.5);
a = z or x;
b = z or y;
<a, b cond indep given z>?
Jialu Bao

• 2nd year PhD student with Justin Hsu
• Projects since i came here
 • A logic for conditional independence
 • How to assert cond indep? (Assertion logic) How to reason about it? (Program logic)
 • Separation logic, intuitionistic logic, category theory (not used eventually)
 • Invariant Learning for Probabilistic Programs

z = Bernoulli(0.5);
x = Bernoulli(0.5);
y = Bernoulli(0.5);
a = z or x;
b = z or y;
<a, b cond indep given z>?
Jialu Bao

2nd year PhD student with Justin Hsu

Projects since I came here

- A logic for conditional independence
 - How to assert cond indep? (Assertion logic) How to reason about it? (Program logic)
 - Separation logic, intuitionistic logic, category theory (not used eventually)
- Invariant Learning for Probabilistic Programs

z = Bernoulli(0.5);
x = Bernoulli(0.5);
y = Bernoulli(0.5);
a = z or x;
b = z or y;
<a, b cond indep given z>?

z = z + 1

while (flip == 0):
d = Bernoulli(p);
if d:
 flip = 1
else:
 z = z + 1

z
Jialu Bao

- 2nd year PhD student with Justin Hsu

Projects since i came here

- A logic for conditional independence
 - How to assert cond indep? (Assertion logic) How to reason about it? (Program logic)
 - Separation logic, intuitionistic logic, category theory (not used eventually)

- Invariant Learning for Probabilistic Programs

 E such that $E \cdot [flip = 0] \leq z$ and

 $z = \text{Bernoulli}(0.5)$;
 $x = \text{Bernoulli}(0.5)$;
 $y = \text{Bernoulli}(0.5)$;
 $a = z \text{ or } x$;
 $b = z \text{ or } y$;
 $<a, b \text{ cond indep given } z>$?

 $<E>$?
 while (flip == 0):
 $d = \text{Bernoulli}(p)$;
 if d:
 flip = 1
 else:
 $z = z + 1$
 $<z>$
Jialu Bao

- 2nd year PhD student with Justin Hsu
- Projects since I came here
 - A logic for conditional independence
 - How to assert cond indep? (Assertion logic) How to reason about it? (Program logic)
 - Separation logic, intuitionistic logic, category theory (not used eventually)
 - Invariant Learning for Probabilistic Programs
 - E such that $E \cdot [flip = 0] \leq z$ and
 - E stays the same before each iteration in expectation

```python
z = Bernoulli(0.5);
x = Bernoulli(0.5);
y = Bernoulli(0.5);
a = z or x;
b = z or y;
<a, b cond indep given z>?

while (flip == 0):
  d = Bernoulli(p);
  if d:
    flip = 1
  else:
    z = z + 1
<br>
```

personal website: http://pages.cs.wisc.edu/~jialu/about/
email: jialu@cs.wisc.edu
twitter: @howowhy
Jialu Bao

• 2nd year PhD student with Justin Hsu
• Projects since i came here
 • A logic for conditional independence
 • How to assert cond indep? (Assertion logic) How to reason about it? (Program logic)
 • Separation logic, intuitionistic logic, category theory (not used eventually)
 • Invariant Learning for Probabilistic Programs
 • E such that $E \cdot [\text{flip} = 0] \leq z$ and E stays the same before each iteration in expectation
 • Weakest pre-expectation, Model tree learning

$$z = \text{Bernoulli}(0.5); \quad x = \text{Bernoulli}(0.5); \quad y = \text{Bernoulli}(0.5); \quad a = z \text{ or } x;$$
$$b = z \text{ or } y; \quad \langle a, b \text{ cond indep given } z\rangle?$$

$$\langle E\rangle? \quad \text{while (flip} == 0\text{):} \quad \text{d = Bernoulli}(p);$$
$$\quad \text{if d:} \quad \text{flip = 1} \quad \text{else:} \quad \text{z = z + 1}$$

personal website: http://pages.cs.wisc.edu/~jialu/about/
email: jialu@cs.wisc.edu
twitter: @howowhy