Research Statement

Robustness of neural networks

Safety and security of DL software

"Panda" + "Gibbon" =

"Positive" String transformations "Negative"

this is one of polanski’s best films.

"Positive"

"Negative"

"Panda"

Autopilot Crash Accident
Robustness of NLP models

Robustness to Programmable String Transformations via Augmented Abstract Training, Yuhao Zhang, Aws Albarghouthi, Loris D'Antoni, ICML2020
 - DSL for robustness specification, CNN

Certified Robustness to Programmable Transformations in LSTMs, Yuhao Zhang, Aws Albarghouthi, Loris D'Antoni, Under Review
 - LSTM, Bi-LSTM, and Tree-LSTM

Future directions: **Robustness of PL models** (from natural language to programming language)

Challenges:
1. DSL design for robustness specifications
2. More complicated models (gated-graph neural networks, transformers)
Safety and Security of DL Software

Can we identify and verify some **key properties** that can increase the developers confidence about a DL software?

- Analogy in traditional software development: null pointer reference, memory leaks, incorrect API calls, and etc.
- E.g., numerical bugs/errors.

Can we model automated driving systems (with DL components) as transition systems and verify some temporal logic properties?